Extensions 1→N→G→Q→1 with N=C2 and Q=C22.C42

Direct product G=N×Q with N=C2 and Q=C22.C42
dρLabelID
C2×C22.C4264C2xC2^2.C4^2128,473


Non-split extensions G=N.Q with N=C2 and Q=C22.C42
extensionφ:Q→Aut NdρLabelID
C2.1(C22.C42) = C23.19C42central extension (φ=1)64C2.1(C2^2.C4^2)128,12
C2.2(C22.C42) = C42.3Q8central extension (φ=1)64C2.2(C2^2.C4^2)128,15
C2.3(C22.C42) = C42.4Q8central stem extension (φ=1)32C2.3(C2^2.C4^2)128,17
C2.4(C22.C42) = C42.25D4central stem extension (φ=1)64C2.4(C2^2.C4^2)128,22
C2.5(C22.C42) = C42.27D4central stem extension (φ=1)64C2.5(C2^2.C4^2)128,24
C2.6(C22.C42) = C42.7Q8central stem extension (φ=1)128C2.6(C2^2.C4^2)128,27
C2.7(C22.C42) = C42.8Q8central stem extension (φ=1)128C2.7(C2^2.C4^2)128,28
C2.8(C22.C42) = C42.388D4central stem extension (φ=1)64C2.8(C2^2.C4^2)128,31
C2.9(C22.C42) = C23.C42central stem extension (φ=1)32C2.9(C2^2.C4^2)128,37
C2.10(C22.C42) = C42.30D4central stem extension (φ=1)64C2.10(C2^2.C4^2)128,39
C2.11(C22.C42) = C42.32D4central stem extension (φ=1)64C2.11(C2^2.C4^2)128,41

׿
×
𝔽